
Python: module cdutil.times

cdutil.times index

Modules
MA
cdms.MV

Numeric
cdms

cdtime
string

sys
types

Classes

TimeSlicer
ASeason

Seasons

class ASeason(TimeSlicer)
Methods defined here:

__init__(self)

Methods inherited from TimeSlicer:

average(self, slab, slices, bounds, norm, criteriaarg=None, statusbar=None)
Return the average of the result of slicer
 Input:
 slab : the slab on which to operate
 slices : the slices for each part
 bounds : the length of each slice
 norm : the actual length of each "season"
 criteriaarg : arguments for criteria thing
 Output:
 out : the average of slab, masked by criteria

departures(self, slab, slicerarg=None, criteriaarg=None, ref=None, statusbar=None)

get(self, slab, slicerarg=None, criteriaarg=None, statusbar=None)

statusbar1(self, i, n, statusbar)

statusbar2(self, statusbar)

1/8

class Seasons(ASeason)

Method resolution order:
Seasons
ASeason
TimeSlicer

Methods defined here:

__init__(self, *seasons)

climatology(self, slab, criteriaarg=None, criteriaargclim=None, statusbar=None)
Compute the climatology from a slab
Input:
 slab
 criteriaarg : the argument for criteria function when slicing the season (and clim)
 criteriaargclim : the argument for criteria function when averaging the seasons together
 if different from criteriarg
Output:
 The Average of the seasons in the order passed when constructing it
 i.e if DJF and JJA are asked, the output will have the average DJF first, then the average JJA
 2 criteria can be passed one for the slicing part and one for the climatology part

departures(self, slab, slicerarg=None, criteriaarg=None, ref=None, statusbar=None)
Return the departures for the list of season you specified, returned in chronological order
i.e. if you asked for DJF and JJA and the first season of your dataset is JJA you will have a JJA first !!!!
Check your time axis coordinate !!!
To pass a specific array from which to compute departures, please pass 1 per season (or None if we should compute it)
for info one default departures see: departures2.__doc__

get(self, slab, slicerarg=None, criteriaarg=None, statusbar=None)
Get the seasons asked for and return them in chronological order
i.e. if you asked for DJF and JJA and the first season of your dataset is JJA you will have a JJA first !!!!
Check your time axis coordinate !!!
slicerarg will be ignored
it is recomended to use Season(slab,criteria=mycriteriaarguments) syntax
rather than Season(slab,None,None,mycriteriaarguments)
Now for the original doc of the get function see get2__doc__:

Methods inherited from TimeSlicer:

average(self, slab, slices, bounds, norm, criteriaarg=None, statusbar=None)
Return the average of the result of slicer
 Input:
 slab : the slab on which to operate
 slices : the slices for each part
 bounds : the length of each slice
 norm : the actual length of each "season"
 criteriaarg : arguments for criteria thing
 Output:

2/8

 out : the average of slab, masked by criteria

statusbar1(self, i, n, statusbar)

statusbar2(self, statusbar)

class TimeSlicer
Author : Charles Doutriaux: doutriaux1@llnl.gov
Date: April 2001
Returns masked average of specific time slices
"slicer" determine which slices of the Transient Variable (TV) are processed
"criteria" gets TV (with time dimension) and returns a "timeless" mask, used to mask the averaged slices

"slicer"
 Input:
 − Time Axis
 − User argument (can be anything) (in a list if more than one argument)
 Output:
 indices : the indices for each season:
 [[i1,i2,...,il],
 [j1,j2,...,jm],
 ...,
 [k1,k2,...kn]]
 bounds : the bounds covered by each slice for each season:
 [[[i1b1,i1b2],[i2b1,i2b2],...,[ilb1,ilb2]],
 [[[j1b1,j1b2],[j2b1,j2b2],...,[jmb1,jmb2]],
 ...,
 [[k1b1,k1b2],[k2b1,k2b2],...,[knb1,knb2]]]
 norm : the actual length of each "season", and its start
 [[Li,Si],
 [Lj,Sj],
 ...,
 [Lk,Sk]]
"criteria"
 Input:
 − slab : a slab
 − mask: the actual percentage of data in each subset used to produce the slab
 the bounds of its first (time) dimension must be correct
 they will be used by centroid
 − spread: the begining and end time of the slice processed
 − User argument (can be anything)
 Output:
 − the slab, masked

Once constructed the object, beside "slicer" and "criteria" has 3 functions:

"get" : which returns the slices wanted, appropriately masked
 Input:
 slab : the slab on which to operate
 sliceruserargument : anything your slicer function needs, default is None

3/8

 criteriauserargument: anything your criteria function needs, default is None
 Output:
 out : averaged and masked slices of slab

"departures" : which returns the departures of slab from the result of get
 Input:
 slab : slab from which the we want to get the departure
 sliceruserargument : anything your slicer function needs, default is None
 criteriauserargument: anything your criteria function needs, default is None
 (ref): optional : result from get or equivalent precomputed

 Output:
 out : departure of slab from ref

"average" : which return the average of the result of get
 Input:
 slab : the slab on which to operate
 slices : the slices for each part
 bounds : the length of each slice
 norm : the actual length of each "season"
 criteriaarg : arguments for criteria thing
 Output:
 out : the average of slab, masked by criteria

Example of construction:
TS=TimeSlicer(slicerfunc,criteriafunc)
myres=TS(myslab,[[slicerarg,[criteriaarg]])
myresdeparture=TS(myslab,[[slicerarg,[criteriaarg,ref]]]

Methods defined here:

__init__(self, slicerfunction=None, criteriafunction=None)

average(self, slab, slices, bounds, norm, criteriaarg=None, statusbar=None)
Return the average of the result of slicer
 Input:
 slab : the slab on which to operate
 slices : the slices for each part
 bounds : the length of each slice
 norm : the actual length of each "season"
 criteriaarg : arguments for criteria thing
 Output:
 out : the average of slab, masked by criteria

departures(self, slab, slicerarg=None, criteriaarg=None, ref=None, statusbar=None)

get(self, slab, slicerarg=None, criteriaarg=None, statusbar=None)

statusbar1(self, i, n, statusbar)

statusbar2(self, statusbar)

4/8

Functions

centroid(msk, bounds, coords=None)
Computes the centroid of a bunch of point
Authors: Charles Doutriaux/Karl Taylor
Date: April 2001
Input:
 s: a slab
 bounds : the bounds of the overall thing
 coords : the coordinate spanned by each subset
Output:
 centroid: a slab representing the centroid, values are between 0 (data evenly distributed evenly across the center) and +/−1 (data not evenly distributed)
 centroid is 1D less than s

cyclicalcentroid(s, bounds, coords=None)
returns the centroid, but this assumes cyclical axis, therefore spread the points around a circle, before computing the centroid
Usage:
 cyclecentroid=cyclicalcentroid(s,bounds)
Input:
 s: a slab
 bounds : the bounds of the overall thing
 coords : the coordinate spanned by each subset
Output:
 cyclecentroid : slab is same shape than s but without the 1st dim

dayBasedSlicer(tim, arg=None)
slicer function for the TimeSlicer class
select days
Author : Charles Doutriaux, doutriaux1@llnl.gov
Original Date: June, 2003
Last Modified: ...
Input:
 − tim: time axis
 − arg: character string representing the desired day/days or day number(s) (jan 1st, is day 0, feb 29th is day 59.5...)
 day are represented as "Jan−01" "January−01" "jan−1", "1−january", case does not matter
 days can be represented by 2 number but then month is assumed to be first ! e.g "01−25" = "jan−25"
 you can mix definitions
Output:
 −

generalCriteria(slab, mask, spread, arg)
Default Conditions:
 50% of the data
 AND
 Centroid < x (in absolute value), centroid is always between 0 (perfect and 1, none perfect)
 by default centroid is not used

Author: Charles Doutriaux, doutriaux1@llnl.gov

Usage:

5/8

 generalCriteria(slab,sliced,slices,arg)
 slab : the original slab
 mask: the actual percentage of data in each subset used to produce the slab
 the bounds of its first (time) dimension must be correct
 they will be used by centroid
 spread: the begining and end time of the slice processed
 arg:
 First represent the % of value present to retain a slice
 Second represent the value of the centroid (between 0: perfect and 1: bad
 If you do not want to use one these criteria pass None
 if you would rather use a cyclicalcnetroid pass: "cyclical" as an Xtra argument

getMonthIndex(my_str)
Given a string representing a month or a season (common abrev)
Returns the ordered indices of the month
Author: Krishna Achutarao
Date: April 2001

getMonthString(my_list)
Given a list of month creates the string representing the sequence

isMonthly(s)
This function test if the data are monthly data from the time axis

mergeTime(ds, statusbar=1)
Merge chronologically a bunch of slab
Version 1.0
Author: Charles Doutriaux, doutriaux1@llnl.gov
Usage:
mymerged=mergeTime(ds)
where:
ds is a list or an array of slabs to merge, each slab MUST be in chronological order
Output:
a slab merging all the slab of ds
order is the order of the first slab

monthBasedSlicer(tim, arg=None)
slicer function for the TimeSlicer class
select months
Author : Charles Doutriaux, doutriaux1@llnl.gov
Original Date: April 2001
Last Modified: October, 2001
Input:
 − tim: time axis
 − arg: character string representing the desired month/season or integer(s)
 also you can pass a list of the months you want (string or integer)
 you can mix integer and strings
Output:
 −

setAxisTimeBoundsDaily(axis, frequency=1)

6/8

Sets the bounds correctly for the time axis (beginning to end of day)
Usage:
tim=s.getTime()
cdutil.times.setAxisTimeBoundsMonthly(tim,frequency=1)
e.g. for twice−daily data use frequency=2
 for 6 hourly data use frequency=4
 for hourly data use frequency=24
Origin of day is always midnight

setAxisTimeBoundsMonthly(axis, stored=0)
Sets the bounds correctly for the time axis (beginning to end of month)
Set stored to 1 to indicate that your data are stored at the end of the month
Usage:
tim=s.getTime()
cdutil.times.setAxisTimeBoundsMonthly(tim,stored=0)

setAxisTimeBoundsYearly(axis)
Sets the bounds correctly for the time axis (beginning to end of year)
Usage:
tim=s.getTime()
cdutil.times.setAxisTimeBoundsYearly(tim)

setSlabTimeBoundsDaily(slab, frequency=1)
Sets the bounds correctly for the time axis (beginning to end of day)
for 'frequency'−daily data
Usage:
cdutil.times.setSlabTimeBoundsDaily(slab,frequency=1)
e.g. for twice−daily data use frequency=2
 for 6 hourly data use frequency=4
 for hourly data use frequency=24
Origin of day is always midnight

setSlabTimeBoundsMonthly(slab, stored=0)
Sets the bounds correctly for the time axis for monthly data stored
without bounds.
Set stored to 1 to indicate that your data are stored at the end of the month
Usage:
cdutil.times.setSlabTimeBoundsMonthly(slab,stored=0)

setSlabTimeBoundsYearly(slab)
Sets the bounds correctly for the time axis for yearly data
Usage:
cdutil.times.setSlabTimeBoundsYearly(slab)

setTimeBoundsDaily(obj, frequency=1)
Sets the bounds correctly for the time axis (beginning to end of day)
for 'frequency'−daily data
Usage:
cdutil.times.setSlabTimeBoundsDaily(slab,frequency=1)
or
cdutil.times.setSlabTimeBoundsDaily(time_axis,frequency=1)
e.g. for twice−daily data use frequency=2

7/8

 for 6 hourly data use frequency=4
 for hourly data use frequency=24
Origin of day is always midnight

setTimeBoundsMonthly(obj, stored=0)
Sets the bounds correctly for the time axis (beginning to end of month)
Set stored to 1 to indicate that your data are stored at the end of the month
Usage:
tim=s.getTime()
cdutil.times.setAxisTimeBoundsMonthly(s,stored=0)
or
cdutil.times.setAxisTimeBoundsMonthly(tim,stored=0)

setTimeBoundsYearly(obj)
Sets the bounds correctly for the time axis for yearly data
Usage:
cdutil.times.setSlabTimeBoundsYearly(slab)
or
cdutil.times.setSlabTimeBoundsYearly(time_axis)

switchCalendars(t1, u1, c1, u2, c2=None)
converts a relative time from one calendar to another, assuming that they are in different calendar
Usage: cvreltime(t1,c1,u2,c2)
where t1 is cdtime reltime object or a value (then u1 is needed)
c1,c2 are cdtime calendars
u1, u2 the units in the final calendar

weekday(a, calendar=None)

Data
ANNUALCYCLE = <cdutil.times.Seasons instance>
APR = <cdutil.times.Seasons instance>
AUG = <cdutil.times.Seasons instance>
DEC = <cdutil.times.Seasons instance>
DJF = <cdutil.times.Seasons instance>
FEB = <cdutil.times.Seasons instance>
JAN = <cdutil.times.Seasons instance>
JJA = <cdutil.times.Seasons instance>
JUL = <cdutil.times.Seasons instance>
JUN = <cdutil.times.Seasons instance>
MAM = <cdutil.times.Seasons instance>
MAR = <cdutil.times.Seasons instance>
MAY = <cdutil.times.Seasons instance>
NOV = <cdutil.times.Seasons instance>
OCT = <cdutil.times.Seasons instance>
SEASONALCYCLE = <cdutil.times.Seasons instance>
SEP = <cdutil.times.Seasons instance>
SON = <cdutil.times.Seasons instance>
YEAR = <cdutil.times.Seasons instance>

8/8

	PCMDI Software Portal - Python: module cdutil.times

